

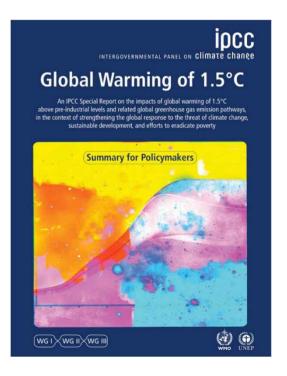
수소전기차 기술 경쟁력 확보를 위한 과제 및 전망

2019. 4. 5.

서울 모터쇼, KINTEX (일산)

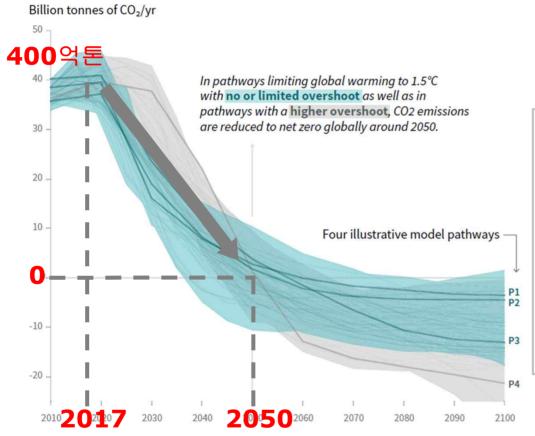
김 민 수 서울대학교 기계항공공학부 교수

목차


- 1.세계 환경 이슈와 규제
- 2. 수소전기자동차의 개요
- 3. 관련 산업 세계 동향
- 4. 관련 산업 국내 동향
- 5. 수소전기자동차 기술
- 6. 미래 시장 전망

IPCC 2018

- ❖ ('18.10, 인천) IPCC Special Report Global Warming of 1.5°C 채택
- ❖ 기후변화에 대한 과학적인 평가를 위해 세계기상기구(WMO)와 유엔환경계획 (UNEP)이 '88년 공동 설립


IPCC: Intergovernmental Panel on Climate Change 기후변화에 관한 정부간(IPCC) 협의체

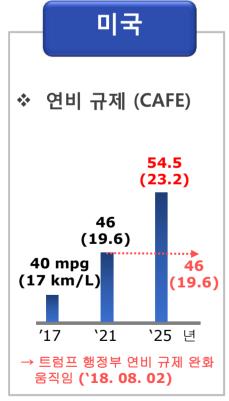
참고자료 : IPCC report(2018) 3

1.5℃ 기온 상승 제한

❖ 온실 가스 저감을 위해 기존 화석연료에서 친환경에너지원으로의 전환 필요

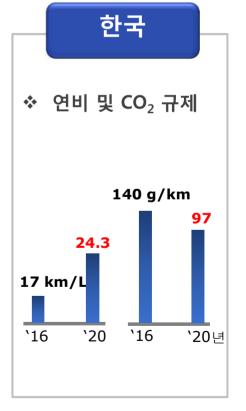
환경 시나리오

- ❖ '20년 이후, CO₂ 배출량 감소를 위한 전환점
- ❖ (`30년) '10년 대비 CO₂ 45% 감축
- ❖ ('50년) 'Non-zero'* 달성
 (기존 '70년에서 감축)
 * CO₂ 배출 대 흡수로 완전 상쇄 의미
- ❖ 목표 달성을 위해 사회 시스템이 친환경 에너지원 체제로 빠르게 변화해야 함


1.5℃ 시나리오를 위한 연간 CO₂ 배출량 감축

참고자료 : IPCC report(2018)




주요국의 자동차 연비/탄소배출량 규제

- ❖ 주요 자동차 시장의 연비 규제 강화, CO₂ 배출량 규제
- ❖ 환경 규제를 통한 친환경차 보급 확대 유도
- ❖ 높은 가격과 인프라 부족 → 원가절감 기술 개발 및 수소충전인프라 보급

※ CAFE: Corporate Average Fuel Economy (기업평균연비)

참고자료 : 현대자동차 발표자료

MOTOR SHOW

주요국의 친환경차 보급 정책

❖ 신재생에너지차 시장 확대를 위한 의무 판매 및 구매 지원 정책

중국, 신에너지차 정책

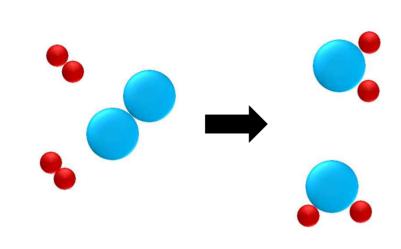
- ❖ '15년까지 50만대, '20년 500만대 보급
 - 공공기관 차량 구매 시 신에너지차 30% 구매
 - '20년까지 수소전기차 보조금 (20만 위안) 유지 *기타 신에너지차(EV/PHEV) 보조금 점진적 축소 추진
 - ❖ 신에너지차 크레딧

	PHEV	ВЕ	V	FC	EV
	50	250- 350	350	350	350-
가중치			5-6	4	5

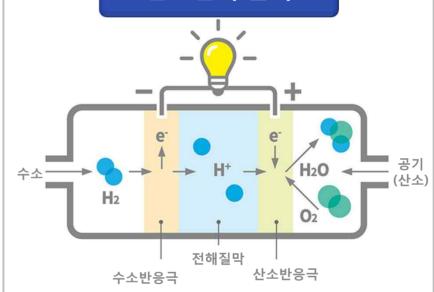
❖ 신에너지차 의무 판매비율

Year	2018	2019	2020
Case #2	8%	10%	12%

대상: 물량 ≥ 50,000 대/년

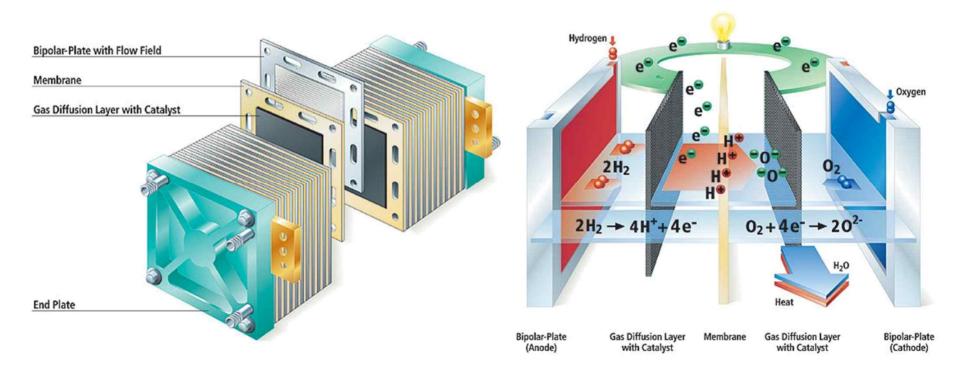

* AER: All Electric Range

참고자료 : 현대자동차 발표자료 6


수소에너지 및 연료전지 개념

수소에너지의 개념

- ❖ 수소-산소 간 물 생성 반응 시 전자 교환
- ❖ 산화환원 반응
- ❖ 전하의 흐름 (=전류)


연료전지 원리

- ❖ 수소-산소 산화환원 이용 전기 생성
- ❖ 높은 에너지 효율
- ❖ 순수 상태의 물과 미활용 열만 배출

연료전지 스택

수소 연료전지 스택 구성품

MOTOR SHOW

수소전기자동차의 부품 구성

열교환기

용OP 운전보조장치 수소차 공기압축기 (뉴로스) 워터펌프 (지엠비코리아)

전력계통

인버터용콘덴서 (뉴인텍)

전력변환장치 (삼화전자)

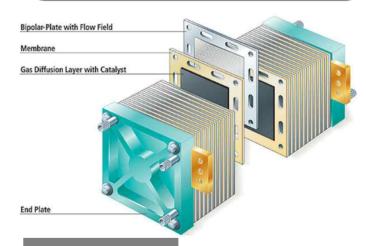
Power Control Unit (PCU) (성창오토텍) BOP (10%) Battery (10%)

온도 제어용 TMS모듈

(인지컨트롤스)

Hydrogen Storage Tank (20%)

Stack (30%)


______ <u>연료선지 스틱</u>

연료전지분리막 (포스코대우) 스택가스킷 (평화홀딩스) 고출력 연료전지 (유니크)

수소저장시스템

수소저장용기 (일진다이아)

수소센서 및 압력센서 (세종공업)

수소충전 연료주입구 (모토닉)

모터

2000

2040

2030

미국 수소경제 로드맵(2003)

2010

- ❖ ('03년)부시 정부 "A Hydrogen Economy-To 2030 and Beyond" 최초로 수소경제 로드맵 수립
- ❖ 수소연료발의(인프라 '03~'07), FreedomCAR(수소차 '02~'06) 등으로 5년 누적 총 17억불 투자

2020

	20	JUU 20 :	10 20	20	20	:	207
	공정책 기조	에너지안보,대기오염 기후변화, H2 안정성	홍보 및 국민 - 수용	에	너지 캐리어로서 H2 에 [배한 신뢰 구축	
	생산	최신 천연 가스 처리 공정	바이오매스/석탄가스화 재생에너지와 원자력 이용 물 분해	원자	물의 광분해 력 열화학적 물 분해		
수 소	운반	파이프 라인 트럭, 철도, 바지선	현장 '분	산형' 설	н	중앙집중/분산형 통합네트워크	
산 업	저장	가압탱크 (가스 및 액체) 화학적 저장 (메탄올, 디젤)	고체 (hydrides)		위한 성숙 단계의 기술 상태 (탄소, 유리 구조)		
문	전환		연료전지 최신 연소 기술	양산을	위한 성숙 단계의 기술		
	응용	연료정제, 우주왕복선 공공부문 발전용 휴대용 전원	분산형 전원 버스, 자동차 fleet 군용		상업용 fleet 분산형 CHP 개인용 승용차	전력사용 발전시스 통합형 연료·전원시스	
							→
	단계	1.	기술 개발 단계	:			
	 구분		2. 초기 시장 진입 단계		4. 수소 경	경제 실현	
			3. 시장	과 인프리	가 확 장		

참고자료: DOE 공개자료, "주요국의 수소경제 프로젝트" 산업통상자원부 보고서

일본 수소전기자동차 보급 로드맵

후쿠시마 연료전지 특허 원전사고 출원 세계 1위 4차 국가에너지 기본계획 ('14.4) 수소연료전지 전략로드맵 ('14.6) 수소기본전략 ('17.12) 5차 국가에너지 기본계획 ('18.4) 수소충전소 가정용연료전지 수소전기차

약 2,000대

22만대 이상

약 100개소

중국 수소전기자동차 보급 로드맵(2016)

❖ 중국 정부 주도의 수소전기차 및 인프라 보급 계획

	1단계('20년)	2단계('25년)	3단계('30년)
단계	규모화 시범 운행	기술 보급 및 응용	대규모 민간 보급
FCEV	0.5만대 상용차 60%, 승용차 40%	5만대(누적) 상용차 1만대, 승용차 4 만대	100만대(누적)
충전소	100기+	300기+	1,000기+
기술	수소산업 기술 확보 (제조·정화 ·저장 ·운송 ·충전소)	생산 원가 절감 (연료전지 시스템 설계 개선 / 핵심 부품 산업화)	수소 관련 기술의 표준화 및 규모화
개발	소재/부품 분야 기술 확보 (비귀금속 소재, 촉매, 분리판)	대규모 민간 보급 도시 개인용 차량, 공공서비스 차량	수소공급의 50% 친환경 에너지 활용 제조 (제조지역: 광둥성, 산동성)

참고자료 : 중국자동차공정학회, 코트라 홈페이지

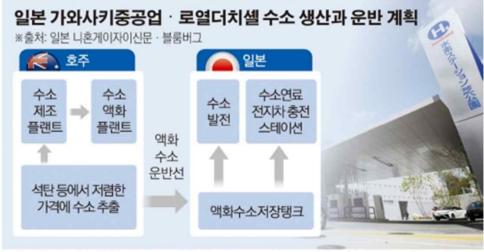


세계 충전소 동향

세계 수소충전소 보급 현황

- **❖ 구축** '17년 전세계 375개소 충전소 가동 → '30년 5,300개소 (보급 로드맵 기준 15,000개소)
 - * 국가별 현황: ('17년 기준) 미국(65), 일본(96), 중국(7), 독일 (57), 프랑스 (16)
- ❖ 업체 수소충전소를 구축 중인 대부분 글로벌 대표 충전설비업체 보유
 - * Linde(독일), Air Products(미국), Air Liquide(프랑스), H2Logic(덴마크), BP(영국), Hydrogenics(캐나다) 등
- 비용 중소형 충전소 독일 13억원, 일본 40억원→ '30년 대형 충전소 1기당 약 16억원(독일)
 - * 비용 절감 요인: 설비 기술 향상, 충전 설비 규격화 및 충전소 규모 대형화 등

주요국의 수소충전소 구축 계획 South Korea: Northeastern US: China: 310HRS by 2022 250HRS by 2027 1,000HRS by 2030 Japan : EU: California: 900HRS by 1,150HRS by 2030 (UK) 100HRS by 2020 2030 150HRS by 2020(Scandinavia) **400**HRS by 2023(Germany) 820HRS by 2030 (Other) *HRS: Hydrogen Refueling Station



세계 수소 생산 및 공급 계획

주요국 수소 생산 현황

- ♣ 유럽 수소, 메탄 가스, 전기의 순환 방식 P2G 기술 → 탄력적인 에너지 수요 대응
- ❖ 일본 해외 생산 액화 수소 캐리어를 통한 액화 수소 저장 및 운송
 - ※ '가와사키 중공업' 액화수소 저장·운반 관련 기술 전담 개발
 - ※ 수소 운반 기술 개발 위해 로열더치셀(LNG 운반 기술 보유)과 제휴 ('16년)
- ❖ 호주 잉여 재생에너지를 활용한 수전해 수소 제조 개발 중
 - ※ 갈탄에서 수소 추출 → 일본 수출
 - ※ 일본 자국 수소 생산 보다 50% 이하 가격에 수소 생산

액화 수소 캐리어 (가와사키중공업)

국내 수소전기자동차 보급 로드맵

정부 수소경제 로드맵 발표 (19.01)

- ❖ '18년 산업혁신 2020플랫폼에 이은 현 정부 수소 관련 산업 육성 정책 발표
- ❖ 발표 중 "국가에너지시스템을 근본적으로 바꾸면서 신성장동력을 마련할 수 있는 기회"
- ❖ 수소차 생산량 확대, 수소충전소 확충, 수소 대중교통 보급, 수소 생산 및 공급 시스템 조성 등

문재인 대통령 전국경제투어

주요 기업 포함 14개 기관 고용투자 협약 체결

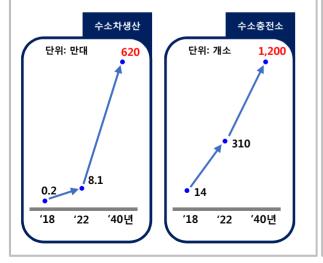
참고자료 : 미디어펜 보도자료(2019) 15

보급 로드맵 주요 내용

'18년

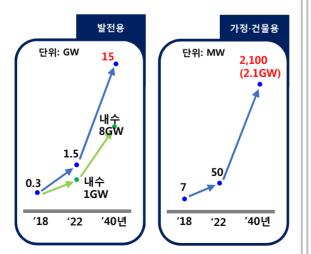
수소경제 준비기

'22년

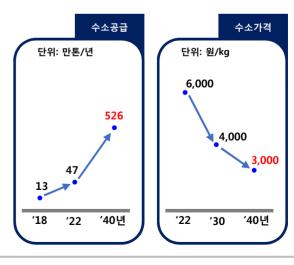

수소경제 확산기

'30년 수소경제 선도기

'40년


수소 모빌리티

- ❖ 620만대, 1200개소
- ❖ ('25년) 양산 체계 → 가격 하락 ※ 내연기관차 수준의 가격 목표
- ❖ SPC 확대 → 민간주도 충전소 확대 I❖ 신축 건물 연료전지 의무화 검토 II❖ 수전해, 해외 생산으로 공급 **X SPC: Special Purpose Company**


수소 에너지

- ❖ 연료전지 발전용 15GW
- |❖ ('25년) LNG 발전 수준 가격하락||❖ ('22년) P2G 기술 확보 ※설치비 65%, 발전단가 50% 하락

수소 생산

- ❖ 연 526만톤, 3,000원/kg
- - ※ 신재생에너지 수전해 생산 연계
- ※ 대량 공급으로 가격 하락 유도

참고자료: 산업통상자원부 보도자료(2019)

국내 수소 모빌리티 전망

수소 모빌리티

- ❖ (~'40년) 목표 수소전기차 620만대 생산 및 수소충전소 1,200개소 구축
- ❖ (~'25년) 가격 연 10만대의 상업적 양산체계 구축 → 내연기관차 수준으로 가격 하락
- ❖ 공공부문 및 민간 수소전기차 보급 확대

❖ ('19)35대 → ('22)2천대 →('40)4만대 ❖ ('19)서울시 택시시범사업 → ('21)

❖ ('20)상용트럭개발 → ('21) 쓰레기차 ❖ ('19) 공공부문 버스 수소 버스 전환 주요도시 보급 → ('40) 8만대 살수차 등 공공부문 보급 → ('40) 3만대

참고자료: 산업통상자원부 보도자료(2019)

04 관련 산업 국내 동향

국내 충전소 동향

전국 수소충전소 현황('18.2)

수소충전소 보급 계획

- ❖ (~'40년) 목표 수소충전소 1,200개소 구축
- ❖ ('19) 14개소 → ('22) 310개소 → ('40) 1,200개소
- ❖ 설치 보조금 지원 및 운영 보조금 검토
- ❖ SPC 참여 → 민간주도 충전소 확대
- ❖ 규제샌드박스 활용 → 충전소 규제 완화
- ❖ LNG, CNG 및 수소 충전이 가능한 융합형 충전소
 - SPC: Special Purpose Company

패키지충전소

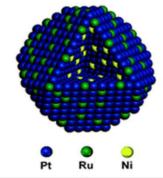
융합형 충전소

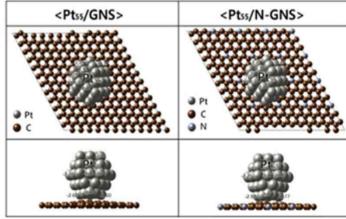
수소충전소 건설비용 저감기술 개발

수소전기차 관련 기술개발 로드맵

10개년('19~'28년) 연구개발 로드맵

	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
스택		고내구성 전극/촉매/담지체(MEA)								
— -		전해질믹	ㅏ/ GDL 박	막화 및 백금	h 저감형 촉	매 개발				
운전 장치	가변압 수소/공기 공급시스템 모듈화									
군인 경시	7	성능 연료전	지 냉각 기	술						
스人 고그	EMBRUSHININ SHIMINIS		7001	bar 수소저정	당용기 대량	생산				
수소 공급 수소 수송용 대용량 튜브 트레일러 개발										
전력반도체 및 고전압 기능 부품										
신뢰성 향상		빅데이터	/인공지능을	을 접목한 연	료전지 고징	: 검출 및 진	!단 기술			
				상용차 전	선용 고출력	/ 대면적 스	택 개발			
상용차 개발			상용차 전	용 시스템을	위한 운전	장치 개발				
		글로벌	상용차용 =	수소탱크 대	응을 위한 E	├입 / 저장 '	압력 별 탱크	L개발		


스택 분야

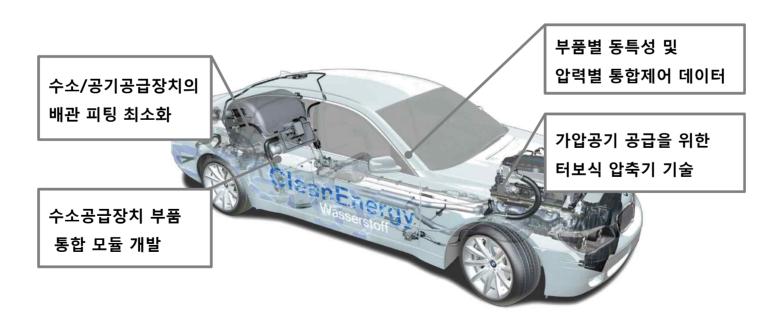


전해질막 / GDL 박막화 및 백금 저감형 촉매 개발

- ❖ 원소재 사용량 최소화 및 원가절감을 위한 전해질막 / GDL 박막화 기술 개발
- ❖ 촉매 이용률 극대화 및 원가절감을 위한 저백금 / 비백금 촉매 개발
- 부품 별 상세 개발 계획

전해질막 /GDL 박막화	전해질막 박막화	원소재 (이오노머, ePTFE 등) 사용량 저감 기술 개발
	GDL 박막화	GDL 두께 절감을 통한 셀 박막화 기술 개발
저백금 촉매	단일 촉매	촉매 담지 비율 최적 설계 기술 등 (이용 백금 사용량 저감) 비백금 촉매 기술 개발
	합금 촉매	백금 - 전이금속 이용 합금 촉매 개발
	신기술	신 구조 적용 선행 촉매 기술 개발

**** GNS: Graphene Nano Sheet**


참고자료: 한국수소산업협회 홈페이지, "부생 수소 현황과 활용" 가스신문(2016), 신소재 경제(2018)

운전 장치 분야

가변압 수소 / 공기 공급시스템 모듈화

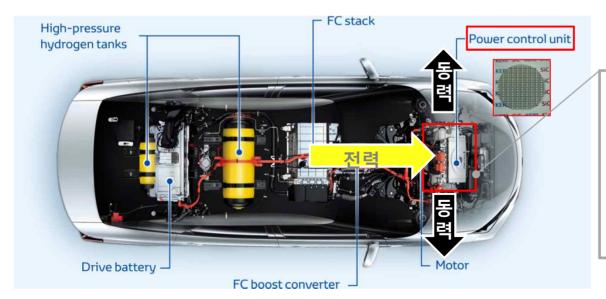
- ❖ 연료전지시스템의 압력 가변 제어 기술로 차량의 최대 출력 향상 가능
 - ※ 단, 가변압력 조건의 운전 중 한 부품의 문제발생에도 압력차에 의해 스택 파손 우려가 있으므로 관련 계통의 부품 정밀도 중요 고압밸브, 배관, 안전장치 부품 개발 중
- ❖ 수소저장장치를 포함해 관련 부품을 통합할 수소 / 공기 공급시스템의 모듈화 기술 필요

참고자료: 2017년 산업기술 R&BD 전략 -그린카 분야-

수소 공급 분야

700 bar 수소저장용기 대량생산

- ❖ 수소 내 투과 라이너 소재, 고강성 탄소 소재, 고가 탄소 소재 절감을 위해서 필라멘트 와인당 공법을 수소저장용기 생산기술에 적용함
- ❖ 수소저장용기는 수소전기차 가격의 약 15%로 제조비용 절감을 위해 대량생산 기술 개발
- ❖ 해당 분야 선도기업으로 Toyota, 다이네텍이 있으며 국내 수소전기차 부품 기술 중 가장 미흡함
- 필라멘트 와인딩 공정


- 저렴한 비용으로 제조단가저감
- 조인트가 없어 고압력용기 적합
- 자동화로 연속적인 공정 수행 가능

신뢰성 향상 분야

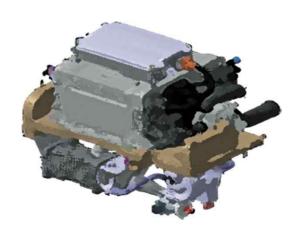
전력반도체 및 고전압 기능 부품 기술

- ❖ '자동차관리법'에 명기된 고전압 전기 안전 기준 이상의 기술을 확보하기 위해 스택 및 전용 모듈의 내구성, 안전성 영향 부품의 성능 개선
- ❖ 전기 안전 문제는 한순간 안전사고로 나타나기 때문에 이를 사전 방지하는 기술 필요
- ❖ 전력반도체는 전류/전압 제어 부품으로 손상 시 동력 차단 등 문제 → 高신뢰성 필요

- SiC 전력반도체 특성(기존 실리콘 기반 반도체 대비)
- 높은 항복 전압 특성 (10배)
- 우수한 열전도도 (3배)
- 높은 주파수에서 동작 가능

상용차 스택 분야

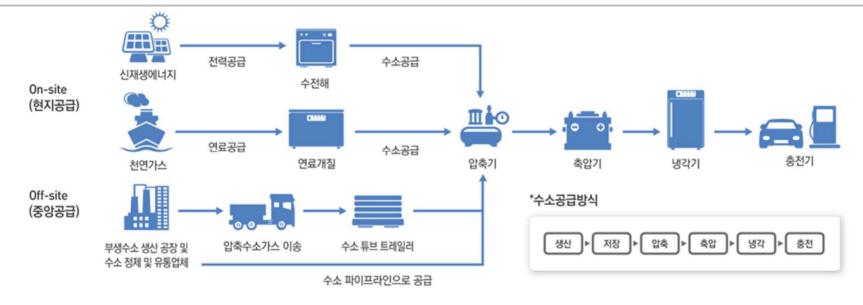
상용차 전용 고출력 / 대면적 스택 개발


- ❖ 트럭 등 일부 상용차 주행환경 고려 시 승용 연료전지스택으로 출력 수준 만족 어려움
- ❖ 수소전기 트럭의 순항 요구 출력 만족을 위한 고출력 / 대면적 스택 개발 필요

스택 출력	기존 승용 연료전지스택 대비 요구출력 2배 수준 (100kW → 200kW급)
스택 사양	- 요구 출력 확보 위한 전극 면적 증대 필요 (최대 인가 전류 증가) - 발열량 및 운전장치 부품 유량 증가 → 변경사항 고려 부품 개발 필요

고출력 대면적

승용/상용 저출력


상용 고출력 전용

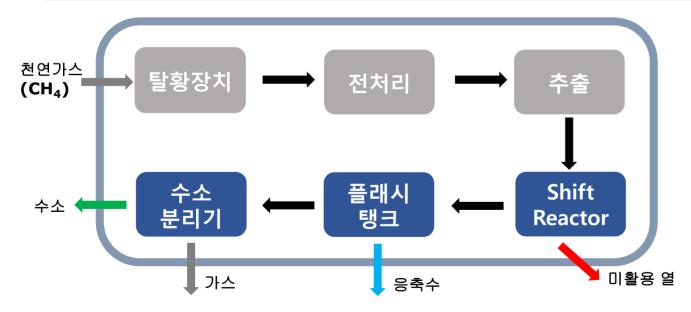
MOTOR SHOW

부생수소 활용 방안

부생 수소 활용 전략

- ❖ 개념 화학 공정 중 발생한 수소를 이용하는 기술
- ❖ 공급 울산 · 여수 등 석유화학, 제철 단지의 부생수소를 파이프라인 및 트레일러로 공급
- ❖ 생산 ('16년) 국내 수소 생산의 75% → 정유 공장

수소 생산 전략


참고자료: 한국수소산업협회 홈페이지, "부생 수소 현황과 활용" 가스신문(2016)

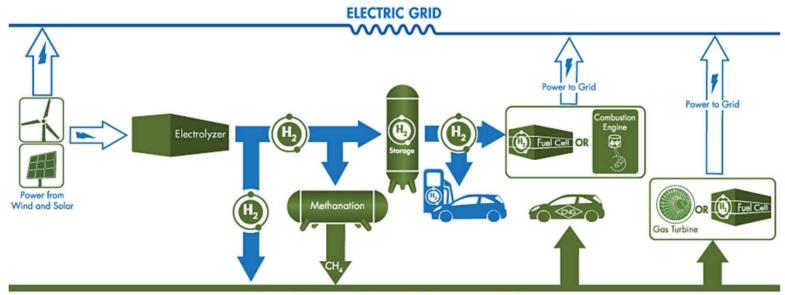
수소 추출 기술

추출을 이용한 수소 생산 기술

- ❖ 천연가스를 원료로 화학적 분해·결합 반응을 이용한 수소 생산
 - ※ 추출 반응식: Steam reforming (SMR) CH₄ + H₂O→ CO + 3H₂
- ❖ 수소 추출 기술을 도입으로 CNG 및 수소 공급이 가능한 복합 충전소 설치
 - ※ 서울상암수소충전소: 난지도립매장의 매립가스를 추출하여 수소 생산·공급

상암동 수소충전소 ('11년 설립)

수소 추출 과정 및 부산물

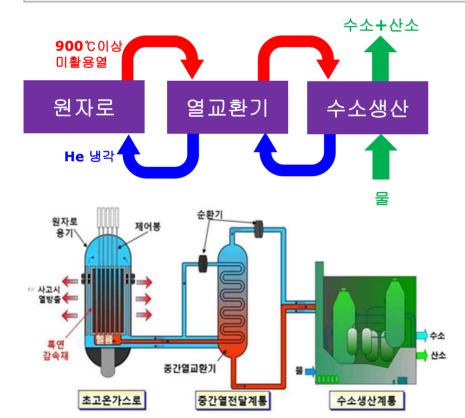

참고자료: 월간수소경제 보도자료(2017)

신재생에너지 이용 수소 생산 기술

가스전력화 P2G(Power to Gas) 기술

- 가념 재생에너지의 잉여 전력 → 수전해 수소 / 메탄 생산 → 에너지 저장 및 Peak 대비
- ❖ 진행 미국 캘리포니아, 일본, 유럽 등 주요국 중심으로 P2G 기술 실증 개발 중
- ❖ 기술 수소 생산 장치, 수소 공급망, 수소 액화 장치, 메탄화 과정 장치 등 기술 개발 필요
- ❖ 호주 일본과 연계해 P2G 기술 개발 및 수소 수출 계획 중

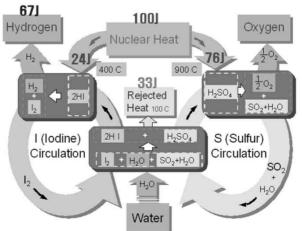
Natural Gas Pipelines and Storage Facilities


P2G(가스전력화)기술 흐름

초고온 가스로 이용 수소 생산 기술

초고온 가스로 (VHTR)

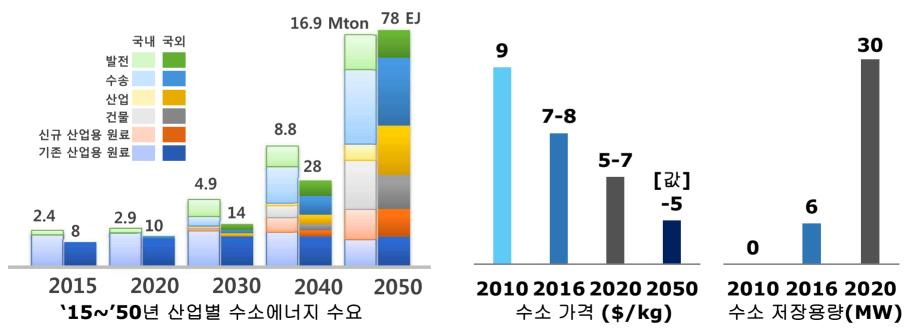
- ❖ 900℃ 이상의 원자로 미활용 열을 이용한 수소 제조법
- '물 → 수소' 로 고온 분해 / 고온 가스로 전기 생산
 - **X VHTR: Very High Temperature gas-cooled Reactor**


- 900℃, 수소·전기 생산시설 개념설계 연구 완료
- 현재 고온 전기분해 수소생산 연구 집중

- '10년 50일간 950 ℃ 운전 성공, 실증 추진
- 600 MW급 수소·전기 생산 상용로 개발 연구 중

- 초고온가스로 계통개념연구 완료
- ▶ 설계해석코드, 핵연료, 초고온재료 개발 중

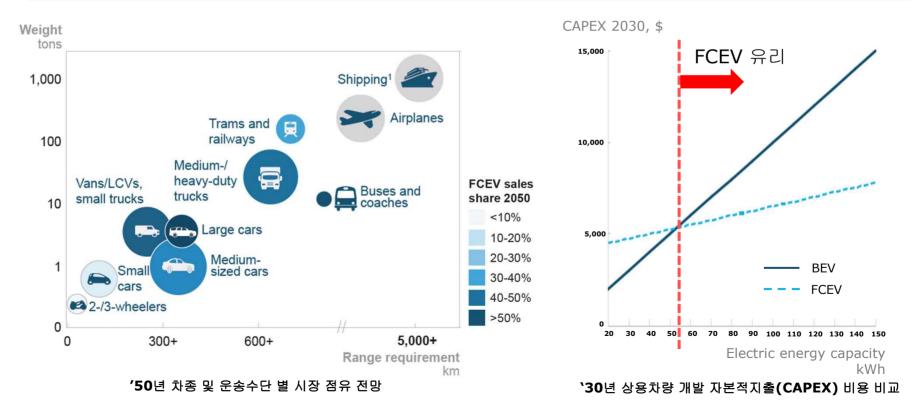
 $\begin{array}{lll} 2HI & \rightarrow H_2 + I_2 \\ H_2 SO_4 \rightarrow 1/2O_2 & + SO_2 + H_2O \\ I_2 + SO_2 + 2H_2O & \rightarrow 2HI + H_2SO_4 \end{array}$


 \rightarrow H₂+1/20₂

수소전기자동차 시장 전망

세계 수소에너지 사용량 증가

- 수요 세계 에너지 수요 18% 수준으로 확대될 것으로 전망
 (국외) '15년 8 EJ → '50년 78 EJ (국내) '15년 2.4백만톤 → '50년 16.9백만톤
 ※ 1 EJ (Exa)= 1018J로 전세계 하루치 에너지 수요에 해당하는 수준
- ❖ 운송 '50년 연간 22 EJ 수소에너지를 운송 부문에 사용 (수소에너지 중 약 28% 차지)


참고자료: "A sustainable pathway for the global energy transition" Hydrogen council(2017): "How hydrogen empowers the energy transition" Hydrogen council(2017)

수소전기자동차 시장 전망

수소전기차 시장 전망

- ❖ 높은 에너지 저장 밀도로 상용차량 부문(트럭, 버스, 대형차량 등)에서 높은 점유율 차지할 것으로 전망 (Hydrogen council, 2017)
- ❖ 장거리 운송용 차량 개발 시, 약 60 kWh 이상 에너지 용량에서 FCEV 개발 유리
- ❖ 수소전기자동차 연료전지 기술 기반 다양한 어플리케이션에서 응용 가능

감사합니다

